[概率论] - 常见统计分布,指数

0-1分布

  • 符号:X01(p)\color{red}{X \sim{} 0 - 1(p)}
  • 分布律

P(X=k)=pk(1p)1kk=0,1P(X=k) = p^k(1-p)^{1-k} \quad k = 0, 1

  • 期望值

k=01kpk(1p)1k=0(1p)+p=p\sum^1_{k=0} k \cdot p^k(1-p)^{1-k} = 0(1-p) + p = p

  • 方差

D(X)=i=01(xiμ)21=p(1p)或者D(X)=E(X2)E(X)=02(1p)+12p(0(1p)+1p)2=p(1p)\begin{aligned} D(X) &= \sum^1_{i=0} \frac{(x_i - \mu)^2}{1} = p(1-p) \\ &\text{或者} \\ D(X) &= E(X^2) - E(X) \\ &= 0^2 \cdot (1-p) + 1^2 \cdot p - (0 \cdot (1-p) + 1 \cdot p)^2 \\ &= p(1-p) \end{aligned}

二项分布

  • 符号:Xb(n,p)\color{red}{X \sim{} b(n, p)}
  • 分布律

P(X=k)=(nk)pk(1p)nkk=1,2,,n其中(nk)=Cnk=n!k!(nk)!\begin{aligned} P(X=k) = &\binom{n}{k}p^k(1-p)^{n-k} \quad k = 1, 2, \cdots, n \\ \text{其中}&\binom{n}{k} = C^k_n = \frac{n!}{k!(n-k)!} \end{aligned}

  • 期望值

E(X)=k=0nkn!k!(nk)!pk(1p)nk=k=1nkn!k!(nk)!pk(1p)nk=k=1nkn(n1)!k(k1)!(nk)!pk(1p)nk=npk=1n(n1)!(k1)!(nk)!pk1(1p)nk=npk=1n(n1)!(k1)!((n1)(k1))!pk1(1p)(n1)(k1)=np(k1)=0n1(n1k1)pk1(1p)(n1)(k1)=npa=0b(ba)pa(1p)ba(a=k1,b=n1)=np\begin{aligned} E(X) &= \sum^n_{k=0} k \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k} \\ &= \sum^n_{k=1} k \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k} \\ &= \sum^n_{k=1} k \frac{n(n-1)!}{k(k-1)!(n-k)!}p^{k}(1-p)^{n-k} \\ &= np\color{red}{\sum^n_{k=1} \frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{n-k}} \\ &= np\color{red}{\sum^n_{k=1} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}p^{k-1}(1-p)^{(n-1)-(k-1)}} \\ &= np\color{red}{\sum^{n-1}_{(k-1)=0}\binom{n-1}{k-1}p^{k-1}(1-p)^{(n-1)-(k-1)}} \\ &= np\color{red}{\sum^b_{a=0}\binom{b}{a}p^a(1-p)^{b-a} \quad (a = k -1, b = n - 1)} \\ &= np \end{aligned}

  • 方差

E(X2)=E(X(X1)+X)=E(X(X1))+E(X)=k=0nk(k1)(kn)pk(1p)nk+np=k=1nk(k1)n!k!(nk)!pk(1p)nk+np=k=2nk(k1)n(n1)(n2)!k(k1)(k2)!(nk)!pk(1p)nk+np=n(n1)k=2n(n2)!(k2)!(nk)!pk(1p)nk+np=n(n1)np+np=(n2n)p2+npD(X)=E(X2)E(X)2=(n2n)p2+np(np)2=np(1p)\begin{aligned} E(X^2) &= E(X(X - 1) + X) \\ &= E(X(X - 1)) + E(X) \\ &= \sum^n_{k=0} k(k-1)\binom{k}{n}p^k(1-p)^{n-k} + np \\ &= \sum^n_{k=1} k(k-1) \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k} + np \\ &= \sum^n_{k=2} k(k-1) \frac{n(n-1)(n-2)!}{k(k-1)(k-2)!(n-k)!}p^k(1-p)^{n-k} + np \\ &= n(n-1)\color{red}\sum^n_{k=2} \frac{(n-2)!}{(k-2)!(n-k)!}p^k(1-p)^{n-k}\color{black} + np \\ &= n(n-1)np + np \\ &= (n^2 - n)p^2 + np \\ \\ D(X) &= E(X^2) - E(X)^2 \\ &= (n^2 - n)p^2 + np - (np)^2 \\ &= np(1 - p) \end{aligned}

几何分布

  • 符号:XG(p)\color{red}{X \sim{} G(p)}
  • 分布律

P(X=k)=(1p)k1pk=1,2,P(X=k) = (1-p)^{k-1}p \quad k=1,2,\cdots

  • 期望值

E(X)=k=0nk(1p)k1p=pk=0nk(1p)k1=p(1+2q+3q2++nqn+1),q=(1p)Sk=1+2q+3q2++nqn+1 (1q)Sk=1+q+q2++qn+1=1qn1qnqn Sk=1qn(1q)2nqn1q limn+qn=0limn+Sk=1(1q)2=0 E(X)=p(1q)2=1p\begin{aligned} E(X) &= \sum^n_{k=0} k (1-p)^{k-1}p \\ &= p\sum^n_{k=0} k (1-p)^{k-1} \\ &= p(1 + 2q +3q^2 + \cdots + nq^{n+1}), \quad q=(1-p) \\ \\ S_k &= 1 + 2q +3q^2 + \cdots + nq^{n+1} \\ &\ \downarrow \\ (1-q)S_k &= 1 + q +q^2 + \cdots + q^{n+1} \\ &= \frac{1-q^n}{1-q} - nq^n \\ &\ \downarrow \\ S_k &= \frac{1-q^n}{(1-q)^2} - \frac{nq^n}{1-q} \\ &\ \downarrow \\ \lim_{n\rightarrow+\infty}{q^n} = 0 &\Rightarrow \lim_{n\rightarrow+\infty}{S_k} = \frac{1}{(1-q)^2} = 0 \\ &\ \downarrow \\ E(X) &= \frac{p}{(1-q)^2} = \frac{1}{p} \end{aligned}

  • 方差

E(X2)=k=0nk2(1p)k1p=pk=0nk2(1p)k1=p(1+22q+32q2++n2qn1)=p(q+2q2+3q3++nqn)=p[q(1q)2]=p1+q(1q)3=1+q(1q)2D(X)=E(X2)E(X)2=1+q(1q)21p=1pp2\begin{aligned} E(X^2) &= \sum^n_{k=0} k^2 (1-p)^{k-1}p \\ &= p\sum^n_{k=0} k^2 (1-p)^{k-1} \\ &= p(1 + 2^2q +3^2q^2 + \cdots + n^2q^{n-1}) \\ &= p(q + 2q^2 +3q^3 + \cdots + nq^{n})' \\ &= p[\frac{q}{(1-q)^2}]' \\ &= p\frac{1+q}{(1-q)^3} \\ &= \frac{1+q}{(1-q)^2} \\ \\ D(X) &= E(X^2) - E(X)^2 \\ &= \frac{1+q}{(1-q)^2} - \frac{1}{p} \\ &= \frac{1-p}{p^2} \end{aligned}

超几何分布

  • 符号:XH(n,K,N)\color{red}{X \sim{} H(n, K, N)}
  • 分布律

P(X=k,n,K,N)=CMkCNMnkCNn(Mk)(NMnk)Nk\begin{aligned} P(X=k, n, K, N) &= \frac{C^k_MC^{n-k}_{N-M}}{C^n_N} \\ \frac{\binom{M}{k}\binom{N-M}{n-k}}{\frac{N}{k}} \end{aligned}

  • 期望值

E(X)=k=0lk(Mk)(NMnk)Nk=M(Nn)k=0l(M1k1)(NMnk)=M(Nn)(N1n1)=nMN\begin{aligned} E(X) &= \sum^l_{k=0} k \frac{\binom{M}{k}\binom{N-M}{n-k}}{\frac{N}{k}} \\ &= \frac{M}{\binom{N}{n}} \sum^l_{k=0} \binom{M - 1}{k - 1}\binom{N-M}{n-k} \\ &= \frac{M}{\binom{N}{n}} \binom{N - 1}{n - 1} \\ &= \frac{nM}{N} \end{aligned}

  • 方差

E(X2)=E(X(X1)+X)=E(X(X1))+E(X)=k=0lk2(Mk)(NMnk)Nk(nMN)2=M(Nn)k=0lk(M1k1)(NMnk)(nMN)2=M(Nn)k=1l(i1)(M1k1)(NMnk)+M(Nn)k=1l(M1k1)(NMnk)(nMN)2=M(Nn)(M1)k=2l(M2k2)(NMni)+M(Nn)k=1l(M1k2)(NMni)(nMN)2=M(Nn)(M1)(N2n2)+M(Nn)(N1n1)(nMN)2=nMN(1MN)(1n1N1)\begin{aligned} E(X^2) &= E(X(X - 1) + X) \\ &= E(X(X - 1)) + E(X) \\ &= \sum^l_{k=0} k^2 \frac{\binom{M}{k}\binom{N-M}{n-k}}{\frac{N}{k}} - (\frac{nM}{N})^2 \\ &= \frac{M}{\binom{N}{n}} \sum^l_{k=0} k \binom{M - 1}{k - 1}\binom{N-M}{n-k} - (\frac{nM}{N})^2 \\ &= \frac{M}{\binom{N}{n}} \sum^l_{k=1} (i - 1)\binom{M - 1}{k - 1}\binom{N-M}{n-k} + \frac{M}{\binom{N}{n}}\sum^l_{k=1}\binom{M - 1}{k - 1}\binom{N-M}{n-k} - (\frac{nM}{N})^2 \\ &= \frac{M}{\binom{N}{n}} (M-1) \sum^l_{k=2} \binom{M - 2}{k - 2}\binom{N - M}{n - i} + \frac{M}{\binom{N}{n}}\sum^l_{k=1} \binom{M - 1}{k - 2}\binom{N - M}{n - i} - (\frac{nM}{N})^2 \\ &= \frac{M}{\binom{N}{n}} (M - 1)\binom{N - 2}{n - 2} + \frac{M}{\binom{N}{n}} \binom{N - 1}{n - 1} - (\frac{nM}{N})^2 \\ &= n\frac{M}{N}(1 - \frac{M}{N})(1 - \frac{n-1}{N-1}) \end{aligned}

泊松分布

  • 符号:Xπ(λ)\color{red}{X \sim{} \pi(\lambda)}
  • 分布律

P(X=k)=λkeλk!(k=1,2,,n)P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k = 1, 2, \cdots, n)

  • 期望值

E(X)=k=0kλkeλk!=λeλk=1λk1(k1)!=λeλeλ=λ\begin{aligned} E(X) &= \sum^\infty_{k=0} k\frac{\lambda^k e^{-\lambda}}{k!} \\ &= \lambda{}e^{-\lambda}\sum^\infty_{k=1}\frac{\lambda^{k-1}}{(k-1)!} \\ &= \lambda{}e^{-\lambda} \cdot e^\lambda \\ &= \lambda \end{aligned}

  • 方差

E(X2)=E(X(X1)+X)=E(X(X1))+E(X)=k=0k(k1)λkeλk!+λ=λ2eλk=2λk2(k2)!+λ=λ2eλeλ+λ=λ2+λD(X)=E(X2)E(X)2=λ2+λλ2=λ\begin{aligned} E(X^2) &= E(X(X - 1) + X) \\ &= E(X(X - 1)) + E(X) \\ &= \sum^\infty_{k=0} k(k-1) \frac{\lambda^ke^{-\lambda}}{k!} + \lambda \\ &= \lambda^2e^{-\lambda}\sum^\infty_{k=2}\frac{\lambda^{k-2}}{(k-2)!}+\lambda \\ &=\lambda^2e^{-\lambda}e^\lambda + \lambda \\ &= \lambda^2 + \lambda \\ \\ D(X) &= E(X^2) - E(X)^2 \\ &= \lambda^2 + \lambda - \lambda^2 \\ &= \lambda \end{aligned}

泊松定理

λ>0\lambda > 0是一个常数,nn是任意正整数,设npn=λnp_n = \lambda,则对于任一固定的非负整数kk,有

limn(nk)pnk(1pn)nk=λkeλk!\lim_{n \to \infty}\binom{n}{k}p^k_n(1-p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}

定理的条件npn=λnp_n = \lambda(常数)意味着当nn很大时pnp_n必定很小,因此,上述定理表明当nn很大,pp很小时(np=λnp=\lambda)有以下近似式

(nk)pk(1p)nkλkeλk!\binom{n}{k}p^k(1-p)^{n-k} \approx \frac{\lambda^k e^{-\lambda}}{k!}

均匀分布

  • 符号:XU(a,b)\color{red}{X \sim{} U(a, b)}
  • 概率密度函数

f(x)={1baa<x<b0其他f(x) = \begin{cases} \frac{1}{b-a} \quad & a < x < b \\ 0 \quad & \text{其他} \end{cases}

  • 期望值

E(X)=abxf(x)dx=abxbadx=[x22(ba)]ab=b22(ba)a22(ba)=a+b2\begin{aligned} E(X) &= \int^b_axf(x)dx \\ &= \int^b_a\frac{x}{b-a}dx \\ &= [\frac{x^2}{2(b-a)}]^b_a \\ &=\frac{b^2}{2(b-a)} - \frac{a^2}{2(b-a)} \\ &=\frac{a+b}{2} \end{aligned}

  • 方差

E(X2)=abx21badx=[x33(ba)]ab=b3a33(ba)=b2+ab+a23D(X)=E(X2)E(X)2=b2+ab+a23a2+2ab+b24=(ba)212\begin{aligned} E(X^2) &= \int^b_ax^2\frac{1}{b-a}dx \\ &= [\frac{x^3}{3(b-a)}]^b_a \\ &= \frac{b^3 - a^3}{3(b-a)} \\ &= \frac{b^2 + ab + a^2}{3} \\ \\ D(X) &= E(X^2) - E(X)^2 \\ &= \frac{b^2 + ab + a^2}{3} - \frac{a^2 + 2ab + b^2}{4} \\ &= \frac{(b-a)^2}{12} \end{aligned}

指数分布

  • 符号:XExp(λ)\color{red}{X \sim{} Exp(\lambda)}
  • 概率密度函数

f(x)={λeλxx00x<0f(x) = \begin{cases} \lambda{}e^{-\lambda{}x} \quad & x \geq 0 \\ 0 \quad & x < 0 \end{cases}

  • 分布函数

F(x)={1eλxx00x<0F(x) = \begin{cases} 1 - e^{-\lambda{}x} \quad & x \geq 0 \\ 0 \quad & x < 0 \end{cases}

  • 期望值

E(X)=xf(x)dx=0xλeλxdx=[xeλx]0+0eλxdx=1λ\begin{aligned} E(X) &= \int^\infty_{-\infty}xf(x)dx \\ &= \int^\infty_0 x\lambda{}e^{-\lambda{}x}dx \\ &= [-xe^{-\lambda x}]^\infty_0 + \int^\infty_0 e^{-\lambda{}x}dx \\ &= \frac{1}{\lambda} \end{aligned}

  • 方差

E(X2)=x2f(x)dx=0x2λeλxdx=[x2eλx]0+02xeλxdx=2λ2D(X)=E(X2)E(X)2=2λ21λ2=1λ2\begin{aligned} E(X^2) &= \int^\infty_{-\infty}x^2f(x)dx \\ &= \int^\infty_0 x^2\lambda{}e^{-\lambda{}x}dx \\ &= [-x^2e^{-\lambda x}]^\infty_0 + \int^\infty_0 2xe^{-\lambda{}x}dx \\ &=\frac{2}{\lambda^2} \\ \\ D(X) &= E(X^2) - E(X)^2 \\ &= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} \\ &= \frac{1}{\lambda^2} \end{aligned}

正态分布

  • 符号:XN(μ,σ2)\color{red}{X \sim{} N(\mu, \sigma^2)}
  • 概率密度函数

f(x)=12πσe(xu)22σ2<x<f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-u)^2}{2\sigma^2}} \quad -\infty < x < \infty

  • 期望值

Z=XμλZ = \dfrac{X - \mu}{\lambda}

E(Z)=12πtet2/2dt=12πet2/2=0E(X)=E(μ+λZ)=μ\begin{aligned} E(Z) &= \frac{1}{\sqrt{2\pi}}\int^\infty_\infty te^{-t^2/2}dt \\ &= \frac{-1}{\sqrt{2\pi}}e^{-t^2/2}|^\infty_\infty \\ &= 0 \\ \\ E(X) &= E(\mu + \lambda Z) = \mu \end{aligned}

  • 方差

D(Z)=E(Z2)E(Z)2=E(Z2)=12πt2et2/2dt=12πtet2/2+12πet2/2=1D(X)=D(μ+λZ)=D(λZ)=λ2D(Z)=λ2\begin{aligned} D(Z) &= E(Z^2) - E(Z)^2 \\ &= E(Z^2) \\ &= \frac{1}{\sqrt{2\pi}}\int^\infty_{-\infty} t^2e^{-t^2/2}dt \\ &= \frac{-1}{\sqrt{2\pi}}te^{-t^2/2}|^\infty_{-\infty} + \frac{1}{\sqrt{2\pi}}\int^\infty_{-\infty} e^{-t^2/2} \\ &= 1 \\ \\ D(X) &= D(\mu + \lambda Z) = D(\lambda Z) = \lambda^2D(Z) = \lambda^2 \end{aligned}

常见指数

  • 拉氏价格指数

PL=i=1n比较年价格×基准年数量i=1n基准年价格×基准年数量×100P_L = \frac{\sum^n_{i=1}\text{比较年价格} \times \text{\textbf{基准}年数量}}{\sum^n_{i=1}\text{\textbf{基准}年价格} \times \text{\textbf{基准}年数量}} \times 100

  • 帕氏指数

PP=i=1n比较年价格×比较年数量i=1n基准年价格×比较年数量×100P_P = \frac{\sum^n_{i=1}\text{\textbf{比较}年价格} \times \text{\textbf{比较}年数量}}{\sum^n_{i=1}\text{基准年价格} \times \text{\textbf{比较}年数量}} \times 100

  • 费舍理想指数

FP=PL×PPF_P = \sqrt{P_L \times P_P}

总结

分布 参数 符号 分布律/概率密度函数 期望 方差
010-1分布 0<p<10<p<1 X01(p)\color{red}{X \sim{} 0 - 1(p)} P(X=k)=pk(1p)1kP(X=k) = p^k(1-p)^{1-k} pp p(1p)p(1-p)
二项分布 n10<p<1\begin{aligned}n \geq 1\quad\\0<p<1\end{aligned} Xb(n,p)\color{red}{X \sim{} b(n, p)} P(X=k)=(nk)pk(1p)nkP(X=k) = \binom{n}{k}p^k(1-p)^{n-k} npnp np(1p)np(1 - p)
几何分布 0<p<10<p<1 XG(p)\color{red}{X \sim{} G(p)} P(X=k)=(1p)k1pk=1,2,P(X=k) = (1-p)^{k-1}p \quad k=1,2,\cdots 1p\frac{1}{p} 1pp2\frac{1-p}{p^2}
超几何分布 N,M,n(MN)(nN)\begin{aligned}N,M,n\\(M \leq N)\\(n \leq N)\end{aligned} XH(n,K,N)\color{red}{X \sim{} H(n, K, N)} P(X=k,n,K,N)=(Mk)(NMnk)NkP(X=k, n, K, N) = \frac{\binom{M}{k}\binom{N-M}{n-k}}{\frac{N}{k}} nMN\frac{nM}{N} nMN(1MN)(1n1N1)n\frac{M}{N}(1 - \frac{M}{N})(1 - \frac{n-1}{N-1})
泊松分布 λ>0\lambda > 0 Xπ(λ)\color{red}{X \sim{} \pi(\lambda)} P(X=k)=λkeλk!P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} λ\lambda λ\lambda
均匀分布 a<ba<b XU(a,b)\color{red}{X \sim{} U(a, b)} f(x)={1baa<x<b0其他f(x) =\begin{cases}\frac{1}{b-a} \quad & a < x < b\\0 \quad & \text{其他}\end{cases} a+b2\frac{a+b}{2} (ba)212\frac{(b-a)^2}{12}
指数分布 0<λ<10<\lambda<1 XExp(λ)\color{red}{X \sim{} Exp(\lambda)} f(x)={λeλxx00x<0f(x) =\begin{cases}\lambda{}e^{-\lambda{}x} \quad & x \geq 0\\0 \quad & x < 0\end{cases} 1λ\frac{1}{\lambda} 1λ2\frac{1}{\lambda^2}
正态分布 u.σ>0u.\sigma>0 XN(μ,σ2)\color{red}{X \sim{} N(\mu, \sigma^2)} f(x)=12πσe(xu)22σ2<x<f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-u)^2}{2\sigma^2}} \quad -\infty < x < \infty μ\mu λ\lambda